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Abstract. We have developed an improved algorithm that allows us to enumerate the number of
site animals (polyominoes) on the square lattice up to size 46. Analysis of the resulting series yields
an improved estimate, τ = 4.062 570(8), for the growth constant of lattice animals and confirms,
to a very high degree of certainty, that the generating function has a logarithmic divergence. We
prove the bound τ > 3.903 18. We also calculate the radius of gyration of both lattice animals
and polygons enumerated by area. The analysis of the radius of gyration series yields the estimate
ν = 0.641 15(5), for both animals and polygons enumerated by area. The mean perimeter of
polygons of area n is also calculated. A number of new amplitude estimates are given.

The enumeration of lattice animals is a classical combinatorial problem of great interest both
intrinsically and as a paradigm of recreational mathematics [1]. A lattice animal is a finite set of
nearest neighbour sites on a lattice. The fundamental problem is the calculation of the number
of animals, bn, containing n sites. In the physics literature lattice animals are very often called
clusters due to their very close relationship to percolation problems [2]. Series expansions for
various percolation properties, such as the percolation probability or the average cluster size,
can be obtained from the perimeter polynomials. These in turn can be calculated by counting
the number of lattice animals bn,m according to their size n and perimeter m [3, 4]. Lattice
animals have also been suggested as a model of branched polymers [5]. In mathematics, and
combinatorics in particular, the term polyominoes is frequently used. A polyomino is a set of
lattice cells joined at their edges, so polyominoes are identical to site animals on the dual lattice.
Furthermore, the enumeration of lattice animals has traditionally served as a benchmark for
computer performance and algorithm design [6–12].

The enumeration of self-avoiding polygons is another classical combinatorial
problem [13]. Most attention has been paid to the enumeration by perimeter, but enumeration
by area is an equally interesting problem. (For polyominoes, the ordinary generating function
of the number of polyominoes of perimeter n has zero radius of convergence [14] and hence
is of rather less interest.) Polygons enumerated by area are just the ‘hole-free’ subset
of polyominoes. There are exponentially fewer polygons than polyominoes [15], but on
universality grounds one would expect the exponent ν characterizing the radius of gyration to
be the same for polyominoes and polygons enumerated by area. We confirm this expectation.

An algorithm for the calculation of bn,m has been published by Martin [6] and Redner [8].
It was used by Sykes and co-workers to calculate series expansions for percolation problems
on various lattices. In particular Sykes and Glen [4] calculated bn,m up to n = 19 on the square
lattice, and thus obtained the number of lattice animals, bn = ∑

m bn,m, to the same order.
Redelmeier [7] presented an improved algorithm for the enumeration of lattice animals and
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extended the results to n = 24. This algorithm was later used by Mertens [10] to devise an
improved algorithm for the calculation of bn,m and a parallel version of the algorithm appeared
a few years later [11]. The next major advance was obtained by Conway [12] who used the
finite lattice method with an associated transfer-matrix algorithm to calculate bn and numerous
other series up to n = 25 [16]. In unpublished work Oliveira e Silva [18] used the parallel
version of the Redelmeier algorithm [11] to extend the enumeration to n = 28. In this work
we use an improved version of Conway’s algorithm to extend the enumeration to n = 46. We
also calculate the radius of gyration of lattice animals and square lattice polygons enumerated
by area up to n = 42. Further, we also calculate the mean perimeter of polygons of area n.
Instructions for the electronic retrieval of these series can be found at the end of this letter.

The method we use to enumerate site animals and polygons on the square lattice is based
on the method used by Conway [12] for the calculation of series expansions for percolation
problems, and is similar to methods devised by Enting for enumeration of self-avoiding
polygons [19] or the algorithm used by Derrida and De Seze to study percolation and lattice
animals [20]. The number of animals that span rectangles of width W and length L are
counted using a transfer matrix algorithm. A detailed description of the algorithm will appear
elsewhere [21].

The quantities and functions we consider in this letter are the following:

(i) the number of polygons of area n, denoted an, and the associated generating function,
A(y) = ∑

any
n;

(ii) the number of lattice animals bn and the associated generating function, A(u) = ∑
bnu

n;
(iii) the first moment of the number pn,m of polygons of perimeter m and area n, an〈p〉n =∑

m mpn,m (then 〈p〉n is the mean perimeter of polygons of area n);
(iv) the mean square radius of gyration of animals of area n, 〈R2

a 〉n and
(v) the mean square radius of gyration of polygons of area n, 〈R2

p〉n.

These quantities are expected to behave as

an = Aκnn−1[1 + o(1)] bn = Bτnn−1[1 + o(1)]

an〈p〉n = ACκn[1 + o(1)]
〈R2

a 〉n = Dn2νa [1 + o(1)] 〈R2
p〉n = En2νp [1 + o(1)]

(1)

where κ is the reciprocal y−1
c of the critical point of the polygon area generating function, and

τ is the reciprocal u−1
c of the critical point of the animal generating function. From numerical

evidence [15] it is well established that both the polygon area generating function and the
animal generating function have a logarithmic singularity, hence the factor 1/n in the first two
equations above. Similarly, it is generally believed [22] that 〈p〉n ∼ n, so the n dependence
vanishes to leading order in the third equation above.

The series studied in this letter have coefficients which grow exponentially, with the sub-
dominant term given by a critical exponent. The generic behaviour is G(x) = ∑

n gnx
n ∼

(1 − x/xc)
−ξ , and hence the coefficients of the generating function gn ∼ µnnξ−1, where

µ = 1/xc. To obtain the singularity structure of the generating functions we first used the
numerical method of differential approximants [23]. Combining the relationship (given above)
between the coefficients in a series and the critical behaviour of the corresponding generating
function with the expected behaviour (1) of the mean square radius of gyration yields the
following expectation for the animal generating functions:

A(u) =
∑

n

bnu
n = A(u) log(1 − τu) (2)

R2
a(u) =

∑

n

bn〈R2
a 〉nn2un =

∑

n

rnu
n ∼ R(u)(1 − τu)−(2+2νa). (3)
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Table 1. Estimates for the critical point uc and exponents 1 − θa and 1 + θa + 2νa obtained from
second-order inhomogeneous differential approximants to the series for the generating functions
of lattice animals and their radius of gyration. Also listed are the corresponding estimates for
polygons. L is the order of the inhomogeneous polynomial.

Square lattice site animals
L uc 1 − θa uc 1 + θa + 2νa

0 0.246 149 987(43) −0.000 523(46) 0.246 150 539(87) 3.284 13(11)
2 0.246 149 92(14) −0.000 43(14) 0.246 150 46(10) 3.284 02(28)
4 0.246 150 07(15) −0.000 55(16) 0.246 150 37(22) 3.283 94(30)
6 0.246 149 99(24) −0.000 46(25) 0.246 150 68(16) 3.284 26(22)
8 0.246 150 01(15) −0.000 52(13) 0.246 150 67(25) 3.284 32(44)

10 0.246 149 97(22) −0.000 44(28) 0.246 150 55(31) 3.284 17(56)

Square lattice polygons enumerated by area

L yc 1 − θp yc 1 + θp + 2νp

0 0.251 829 311(24) −0.000 022(23) 0.251 831 33(81) −3.284 7(13)
2 0.251 829 340(20) −0.000 051(19) 0.251 830 43(73) −3.284 39(88)
4 0.251 829 349(52) −0.000 059(53) 0.251 830 52(62) −3.284 6(12)
6 0.251 829 314(12) −0.000 025(12) 0.251 830 2(11) −3.284 1(16)
8 0.251 829 320(18) −0.000 031(19) 0.251 830 35(50) −3.284 32(62)

10 0.251 829 319(12) −0.000 029(12) 0.251 829 8(19) −3.283 6(28)

Thus we expect these series to have a critical point, uc = 1/τ , and as stated previously the
animal generating function is expected to have a logarithmic singularity. Similar expressions
hold for the corresponding polygon area generating function, though with a different growth
constant κ . The radius of gyration series are expected to diverge with exponents 2 + 2νa and
2 + 2νp respectively, though, as we have argued above, we expect the exponents to be equal.

Estimates of the critical point and critical exponent were obtained by averaging values
obtained from second-order [L/N;M;K] inhomogeneous differential approximants. In
table 1 we have listed the estimates obtained from this analysis. The error quoted for these
estimates reflects the spread (basically one standard deviation) among the approximants. Note
that these error bounds should not be viewed as a measure of the true error as they cannot include
possible systematic sources of error. From this we see that the animal generating function has
a singularity at uc = 0.246 150(1), and thus we obtain the estimate τ = 4.062 56(2) for
the growth constant. The exponent estimates are consistent with the expected logarithmic
divergence. The central estimates of uc obtained from the radius of gyration series are a little
larger than, but nonetheless consistent with, those from the animal generating function. From
this analysis we see that this series has a divergence at uc with an exponent 2+2νa = 3.2840(8),
and thus νa = 0.6420(4).

Once the conjectured exact value of the exponent has been confirmed we can obtain an
improved estimate for the critical point. In figure 1 we have plotted estimates for the exponent
versus the corresponding estimates for the critical point uc as obtained from second-order
approximants to the animal generating function. From this figure we see that, as the estimates
for the exponent approach 0, the estimates of uc approach 0.246 1497. From the spread among
the approximants we obtain out final estimateuc = 0.246 1496(5), and thus the growth constant
τ = 4.062 570(8). An earlier analysis, based on shorter series [15], gave τ = 4.062 591(9). A
similar analysis for the lattice tree generating function is given in [21], and there it is found that
ν = 0.641 15(5). The estimates of uc obtained from differential approximants to the radius
of gyration of animals is consistently larger than the above final estimate and this is probably
the reason that the estimate for νa is slightly larger than that obtained from trees. Further
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Figure 1. Estimates for the critical exponent 1 − θa versus the critical point uc as obtained from
second-order differential approximants to the series for the generating function of site animals on
the square lattice.
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Figure 2. Estimates for the critical exponent 2 + 2νa versus the critical point uc as obtained from
second-order differential approximants to the series for the generating function of the radius of
gyration of site animals on the square lattice.

evidence of this can be found by looking at figure 2, where we have plotted the estimates of the
exponent 2 + 2νa versus uc as obtained from the radius of gyration series for animals. Clearly
as uc decreases so does the exponent and as uc approaches 0.246 1497 the exponent becomes
closer to the estimate 2 + 2νa = 3.2823(1) obtained [21] for lattice trees and the discrepancy
is thus largely resolved. For this reason we claim that the most precise estimate for ν is the
one obtained [21] from the tree series. Further evidence for this claim is given in [21].

Using this value of the exponent ν, and the estimate of uc cited above, we repeated the
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amplitude analysis of the animal series cited in [15]. Now however we have 46 terms. In [15] we
found evidence that bn ∼ τn/n[d0+d1/n+d2/n

%2 +d3/n
%3 +· · ·] with%n = n. With the longer

series we in fact find that %2 = 1.5 and %3 = 2, with subsequent values of %k presumably
increasing by 1

2 . We note that this is consistent with the known correction-to-scaling exponent
for polygons enumerated by perimeter, % = 1.5 [24]. By fitting to this form we estimate
d0 = 0.316 915(10), d1 = −0.276(2), d2 = 0.335(10) and d4 = −0.25(5). The errors quoted
tacitly assume that the critical point is correct. A similar analysis for the radius of gyration
series displays evidence of a similar confluent term, and we find the data can be effectively fitted
by the following asymptotic form: n2bn〈R2

a 〉n ∼ τnn2ν+1[e0 + e1/n + e2/n
%2 + e3/n

%3 + · · ·].
That is to say, the same confluent exponent is observed, and the amplitudes may be estimated as
e0 = 0.0599(2), e1 = −0.190(8) and e2 = 0.5(1). The quality of the fit was less satisfactory
than the corresponding fit to the total number of animals, and only three amplitudes can be
quoted with any confidence. Combining these, we find 〈R2

a 〉n ∼ n2ν[f0 + f1/n + f2/n
3/2]

where f0 = 0.1890(12), f1 = −0.435(26) and f2 = 1.4(4).
For square lattice polygons enumerated by area, the series to 42 terms is given in [15]. The

differential approximants are summarized in table 2, and on the basis of these, and a subsequent
analysis that assumes that the critical exponent is zero, we estimated the connective constant
to be κ = 3.970 943 97(9). An amplitude analysis, also given in [15], gave

an ∼ κn/n[0.408 105 − 0.547/n + 0.63/n2 + o(1/n2)].

Here there is no evidence of a correction-to-scaling term % = 1.5, though there is some
evidence of a weaker non-analytic correction, perhaps consistent with % = 2.5.

The differential approximant analysis for the radius of gyration series is also summarized
in table 2, and displays similar features to that for animals just discussed. Using the quoted
value for κ , a biased differential approximant analysis of the generating function

R2
p(y) =

∑

n

an〈R2
p〉nn2yn =

∑

n

rny
n ∼ R(y)(1 − κy)−(2+2νp)

similar to that described above for lattice animals gave mainly defective approximants, though
almost all exponent estimates were clustered around 2 + 2νp = 3.283 or νp = 0.6415. This
is very close to the estimate obtained for both polyominoes and lattice trees, cited above.
Accordingly, we conjecture that the three exponents are the same, and we take the seemingly
most precise value, ν = 0.641 15 as found for lattice trees, as our preferred value.

Using this value of the exponent, and the estimate of κ cited above, we repeated the
amplitude analysis mutatis mutandis described above in our analysis of animals. A similar fit
to the radius of gyration series also showed evidence of a correction-to-scaling term % = 1.5,
and we found n2an〈R2

p〉n ∼ κnn2ν+1[0.084 88 − 0.457/n + 0.77/n1.5 + 0.3/n2 + · · ·]. Errors
in the amplitude estimates are expected to be confined to the last quoted digit. Combining
these results we find 〈R2

a 〉n ∼ n2ν[g0 + g1/n + g2/n
3/2] where g0 = 0.2080, g1 = −0.840 and

g2 = 1.9.
A similar analysis of the first-moment series was also made, and again we found evidence

of a non-analytic correction-to-scaling term % = 1.5. More precisely, we found

an〈p〉n ∼ κn[0.757 15 − 0.064/n + 0.07/n3/2 + O(1/n2)]

so that

〈p〉n ∼ 1.8552n + 2.33 + 0.17/
√
n.

Finally, we used the series to derive improved rigorous lower bounds for the growth
constants of lattice animals and trees. Using concatenation arguments, Rands and Welsh [25]
showed that if we define a sequence pn such that

bn+1 = pn+1 + pnb2 + · · · + p3bn−1 + p2bn (4)
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and construct the generating functions

A∗(u) = 1 +
∞∑

n=1

bn+1u
n (5)

and

P(u) =
∞∑

n=1

pn+1u
n (6)

then

A∗(u) = 1 + A∗(u)P(u) (7)

and A∗(u) is singular when P(u) = 1. The coefficients in P(u) are obviously known correctly
to the same order N = 2Wmax − 1 as A∗(u). If we look at the polynomial PN obtained by
truncating P(u) at order N then the unique positive zero, 1/τN , of PN − 1 = 0 is a lower
bound for τ . Using our extended series we find that τ � 3.903 184 . . . .

In conclusion, radically extended series for animals and polygons enumerated by area
have been presented. Improved estimates of critical points and critical exponents have been
made. The area generating function of both polyominoes and polygons is found to have a
logarithmic singularity, while the radius of gyration exponent was estimated to be ν = 0.641 15.
This value merits some discussion. Two-dimensional lattice models frequently have rational
critical exponents with typically one- or two-digit numerators and denominators. In this case
the closest ‘small’ rational fraction is 109

170 , a startlingly uncompelling one! However, as the
animal problem is not conformally invariant, we have no theoretical reason to expect a rational
exponent, and our result certainly does not suggest one. Earlier, less precise estimates of ν

have been given in [20], wherein the estimate ν = 0.6408(3) was made, and more recently
in [26] the Monte Carlo estimate for lattice trees, ν = 0.642(10), is given. Several earlier,
less precise Monte Carlo and series estimates are also referenced there, and the correction-to-
scaling exponent is also studied, and the estimate % = 0.65 ± 0.20 given. However for the
problems of both polyominoes and polygons, we find no evidence of any such singularity with
exponent less than 1. This is reminiscent of the situation for the enumeration of polygons by
perimeter, where for many years various methods of analysis yielded estimates in the range
0.5–1.5. Only with very long series [17] did it become clear that there were no such terms
with exponent less than 1, and that the long-standing prediction of Nienhuis [24] that % = 1.5
was completely correct. We suggest that something similar is the case here.

We have also obtained a more precise lower bound, τ > 3.903 18, on the polyomino
connective constant.

Finally we should comment briefly on the amplitude estimates we have made. These may
be summarized, following the definitions in (1), as A = 0.408 105(10), B = 0.316 915(10),
C = 1.8552(10), D = 0.1890(12) and E = 0.2080(2). For polygon enumeration by
perimeter, there are a number of universal ratios [27] known. In the case considered here, where
we enumerate by area, there are no published predictions. Many analogous relations would not
exist, as in the perimeter case they depend on theorems following from conformal invariance.
While certain products and quotients are suggestive, none are sufficiently compelling to lead
us to believe that they are worth publishing. We rather highlight this as an open problem, for
which we provide useful test data.

The series for the generating functions studied in this letter can be obtained via e-mail
by sending a request to I.Jensen@ms.unimelb.edu.au or via the world wide web on the URL
http://www.ms.unimelb.edu.au/˜iwan/ by following the instructions.

Financial support from the Australian Research Council is gratefully acknowledged, as is
useful discussion with John Cardy.
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